Question		tion	Expected Answers	Marks	Additional Guidance
1	а	(i)	mass of uranium is greater than (the sum of) the mass of the products	M1	
			$E = \Delta mc^2$	A1	
			OR		
			binding energy of the products is greater than that of uranium	M1	
			energy available is the difference between the binding energies of uranium and the sum of the products	A1	
		(ii)	kinetic energy	B1	
	b	(i)	the neutron is a single nucleon / cannot be split further / no binding has occurred	B1	The neutron is not bound to anything
		(ii)	binding energy of uranium = $235 \times 7.6 = 1786$ binding energy of products = $141 \times 8.3 + 92 \times 8.7$ = $1170.3 + 800.4$ energy available = 184.7 (MeV)	C1	An answer of 9.4 (not using the number of nucleons) scores zero
			Total	A1	Allow ≥ 2 st (180, 185, 184.7) Penalise 184 as an AE
			TOTAL	[0]	

Question		tion	Expected Answers	Marks	Additional Guidance	
2	а		$F = Q_1 Q_2 / 4\pi\epsilon_0 r^2$ = (1.6 x 10 ⁻¹⁹ x 1.6 x 10 ⁻¹⁹) / $4\pi\epsilon_0 (2x 10^{-15})^2$	C1	Allow use of 9 x 10 ⁹ instead of 1 / $4\pi\epsilon_0$ (using this gives 57.6) Allow $\ge 2sf$ (58)	
			= 57.5 (N)	A1	If correct formula quoted and then AE (e.g. not squaring r <u>or</u> not squaring Q) then allow ecf in final answer for 2/3	
	b		attractive strong (nuclear force)	B1	Do not it holds them together	
	C		as the proton travels towards the stationary proton it experiences a repulsive force that slows it down. (It needs a high velocity) to get close enough (to the proton) / for the (attractive) <u>short range</u> force to have any effect	B1		
				B1		
			Total	[5]		

Question		on	Answer	Marks	Guidance
3	(a)	(i)	momentum / mass-energy / charge / proton number / baryon number / nucleon number	B1	Not: 'energy' on its own
		(ii)	Some basic labelling of neutron(s), Xe and Sr	B1	
			Correct extension of diagram showing at least one of the neutrons interacting with <u>U-235</u> nucleus and producing neutron(s) and 'fragments'	B1	
	(b)	(i)	initial $m = 6.686 \times 10^{-27}$ (kg) or final $m = 6.681 \times 10^{-27}$ (kg) or $\Delta m = 0.005 \times 10^{-27}$ (kg)	C1	
			$\Delta E = 0.005 \times 10^{-27} \times (3.0 \times 10^8)^2$	C1	
			energy = 4.5×10^{-13} (J)	A1	
		(ii)	kinetic (energy)	B1	Not: heat / sound Allow: (gamma) photons / EM radiation
		(iii)	$KE = \frac{3}{2}kT$		
			$KE = \frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{9}$	C1	
			$KE = 2.1 \times 10^{-14} (J)$	A1	Allow : 1 sf answer or 10^{-14} (J) because the temperature is given as 10^9 K
		(iv)	Some nuclei will have KE greater than the mean KE (and hence cause fusion) (AW)	B1	
			Total	10	

Question		ion	Answers	Marks	Guidance
4	(a)		Same charge / number of protons	B1	Not: 'same chemical property'
	(b)		strong (nuclear force / interaction) gravitational (force)	B1 B1	Allow: 'gravity'
	(c)	(i)	¹⁵ ₇ N	B1	
		(ii)	$(u d d) \rightarrow (u u d)$	B1	Allow: One down quark becomes up quark or $d \rightarrow u$ (+ electron + antineutrino)
	(d)	(i)	0.16 MeV = $0.16 \times 10^{6} \times 1.6 \times 10^{-19}$ $\frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2} = 2.56 \times 10^{-14}$ speed = 2.4×10^{8} (m s ⁻¹) or 2.37×10^{8} (m s ⁻¹)	C1 A1	Allow : 1 mark for using 9.8 MeV; answer is equal to 1.86×10^9 (m s ⁻¹)
		(ii)	The mass of the electron increases / greater than 'rest mass'	B1	
	(e)	(i)	$\lambda = 0.693/T$ $\lambda = 0.693/(5560 \times 3.16 \times 10^{7})$ $\lambda = 3.9 \times 10^{-12} \text{ (s}^{-1} \text{ or } 3.94 \times 10^{-12} \text{ (s}^{-1})$	C1 A1	Allow : 1 mark for 1.25×10^{-4} (if 5560 y used)
		(ii)	number = $\frac{1.0 \times 10^{-3}}{14} \times 6.02 \times 10^{23}$ number = 4.3×10^{19}	M1 A0	Note: This step must be seen to score 1 mark
		(iii)	activity = λN activity = $3.94 \times 10^{-12} \times 4.3 \times 10^{19}$ activity = 1.7×10^8 (Bq) or 1.69×10^8 (Bq)	C1 A1	Possible ecf from (e)(i) and (e)(ii)

Question	Answers	Marks	Guidance
(f)	 Any three from: Plants / living things take in carbon(-dioxide) or plants / living things stop taking in carbon after death The ratio of carbon-14 to carbon-12 (nuclei) for the relic sample is determined The current ratio of carbon-14 to carbon-12 nuclei is determined The age of the relic is found using 'x = x₀e^{-λt}' 	B1×3	Must use ticks on Scoris to show where the marks are awarded
	Limitation: The ratio of carbon-14 to carbon-12 is assumed to be constant / count(-rate) from relic may be comparable to background count(-rate)	B1	Allow: Any other valid comment for the limitation
	Total	17	

Question		ion	Answers	Marks	Guidance
5	(a)		(Minimum) energy to separate (all) nucleons / protons <u>and</u> neutrons (of a nucleus)	M1 A1	Alternative: B.E. = mass defect $\times c^2$ M1 mass defect = mass of nucleons – mass of nucleus A1
	(b)	(BE of ² H = 2 × 1.8 × 10 ⁻¹³ (J) or BE of ⁴ He = 4 × 1.1 × 10 ⁻¹² (J) energy = $(4 \times 1.1 \times 10^{-12}) - 2 \times (2 \times 1.8 \times 10^{-13})$ energy = 3.68×10^{-12} (J) / 3.7×10^{-12} (J)	C1 C1 A0	Note: Ignore signs
		(ii) (ii)	total surface area = $4\pi \times (1.5 \times 10^{11})^2$ power = $1400 \times (2.83 \times 10^{23})$ power = 3.96×10^{26} (W) / 4.0×10^{26} (W) number = $4.0 \times 10^{26}/3.7 \times 10^{-12}$ number = 1.1×10^{38} (s ⁻¹) or 1.08×10^{38} (s ⁻¹)	C1 C1 A0 C1 A1	Allow: 10 ³⁸ (s ⁻¹) because the question is about an
			Total	8	